
Parallel Monotonic Basin Hopping for Low Thrust
Trajectory Optimization

Steven L. McCarty,* Melissa L. McGuire+
NASA Glenn Research Center, Cleveland, Ohio, 44135, USA

Monotonic Basin Hopping has been shown to be an effective method of solving low thrust
trajectory optimization problems. This paper outlines an extension to the typical serial
implementation by parallelizing it over any number of available compute cores. The Parallel
Monotonic Basin Hopping algorithm described herein is shown to be a faster way to locate
feasible solutions and improve locally optimal solutions in an automated way without
requiring a feasible initial guess. The increased speed achieved through parallelization enables
the algorithm to be applied to more complex problems that would otherwise be impractical
for a serial implementation. Three low thrust example cases are used to demonstrate the
effectiveness of the algorithm. Finally, a direct comparison between serial and parallel
implementations demonstrates the expected improvement in solve time.

I. Introduction and Motivation

he process of optimizing low-thrust trajectories is complex and solutions are often non-intuitive. Multiple
gravitating bodies, long duration finite burns, many Optimization Variables (OV), and complicated constraints

can make convergence difficult to achieve. Such problems often require an experienced mission designer to carefully
supervise the optimizer, making small tweaks to constraints and solver settings, while working towards convergence.
As the complexity of the problem grows, so too does the time it takes to locate a feasible solution. If an experienced
mission designer is able to successfully converge a complex problem to a locally optimal solution, there may still exist
a more optimal solution lurking nearby. It was these factors that motivated the development of a method to aid the
mission designer in locating feasible solutions and improving optimal solutions to complex low-thrust trajectory
optimization problems in an automated way.

II. Monotonic Basin Hopping

Monotonic Basin Hopping (MBH) is a stochastic global optimization algorithm that has been shown to be effective
for low-thrust spacecraft trajectory optimization problems. Further, it is known to be robust and require minimal
human supervision during the optimization. The NASA-developed Evolvable Mission Trajectory Generator, EMTG,
is a notable example.1,2 MBH works by repeatedly perturbing the problem’s OV with some random distribution,
known as hopping, and attempting a local optimization for each perturbed state. If a more feasible, or eventually
optimal, solution is found, that solution provides a new set of OV that are then similarly perturbed. This process
repeats serially until a specified time limit or maximum number of hops is reached.

Figure 1 is a simple example pseudo-code using MBH to minimize an objective function, where x is an array of
OV, x0 is the initial guess, x* is the array producing the current best objective function value, xf is the array after
local optimization, and b is an array of random numbers. The distribution of random numbers is chosen such that x
remains in the general vicinity of x* in order to take advantage of the assumed clustering of optimal solutions.3
Selection of the random numbers and type of distribution is an important aspect of tuning the MBH algorithm4, which
is discussed further in section IV.

* Mission Design Engineer, Mission Architecture and Analysis Branch, Steven.McCarty@nasa.gov
+ Lead Mission Design Engineer, Mission Architecture and Analysis Branch, Melissa.L.McGuire@nasa.gov

T

https://ntrs.nasa.gov/search.jsp?R=20180002379 2018-07-23T23:27:40+00:00Z

1: x* = x0
2: while time < time_limit:
3: b = random_numbers
4: x = x* + b # hop
5: run local optimization on x
6: if objective < best_objective:
7: x* = xf

Figure 1. Simple MBH Pseudo Code

Serial (i.e. single core) implementations of MBH can be coupled with more efficient simplified dynamics models,

including low-thrust approximation using the Sims-Flanagan transcription with 2-body Kepler propagation.2 With
simplified dynamics, the amount of time needed for the local optimizer to attempt to solve a single instance of the
problem small enough that a serial approach is useful. This efficiency lends itself well to the large number of function
evaluations generally required by MBH. For very complex low-thrust trajectory optimization problems, with multiple
gravitating bodies, fully integrated dynamics, long duration finite burns, and many OV, local optimization of a single
instance of the problem can require significantly more time than the simplified alternative.

The Parallel Monotonic Basin Hopping (PMBH) algorithm described in this paper is an attempt to compensate for
the increased solve time necessitated by more complex trajectory optimization problems by spreading the MBH
algorithm across any number of available cores.

III. Parallel MBH

The algorithm described in this paper extends the typical MBH algorithm by parallelizing it over any number of
available cores. This is achieved by splitting duties amongst a single head node and n workers. The head node is
responsible for continuously receiving results from each worker, comparing the result to the best-known solution, and
alerting the workers when a better solution should be used as the starting point (x*). Each worker continuously runs
a serial MBH algorithm, sending each solution to the head node (without waiting for a reply) and checking after each
hop if an updated starting point has been delivered. Once the workers are initially spawned, they are free to
continuously hop without waiting for other workers to finish or for the head node to evaluate their results. This allows
a large number of workers to collaboratively search the solution space without wasting wall clock time. In doing so,
the more time expensive function evaluations required for complex higher-fidelity trajectory optimization problems
can be compensated for by running many instances in parallel.

Figure 2 and Figure 3 contain pseudo code for the head node and each worker, respectively, where X* is the array
of OV corresponding to the best objective function value at the head node.

1: X* = x0
2: send X* to workers
3:
4: for solution received from workers:
5: if objective < best_objective:
6: X* = xf
7: best_objective = objective
8: send X* to workers

Figure 2. Pseudo Code for PMBH Head Node

1: while time < time_limit:
2: if X* received from head_node:
3: x* = X*
4: b = random_numbers
5: x = x* + b # hop
6: run local optimization on x
7: send solution to head_node

Figure 3. Pseudo Code for PMBH Workers

 In the implementation of PMBH described in the pseudo code above, all information is relayed by the head node
allowing the processes at the workers to be independent of one another. This independence enables the algorithm to,
in theory, scale linearly with the number of cores available. That is, the time to reach a particular solution should
decrease linearly with the number of cores. A closer look at scaling can be found in section VI.

IV. Implementation

The details of how best to implement the PMBH algorithm will depend on the application and familiarities of the
user. For example, the implementation described in this paper has been written in Python5 and uses Copernicus6 as the
trajectory optimizer. Some of the specific implementation details are discussed in this section.

A. Trajectory Optimizer
In the context of this paper, the PMBH algorithm is a wrapper around some sort of mission design tool with an

accompanying optimizer. In this case, Copernicus6 was chosen as the mission design tool because of its extensive use
in the Mission Architecture and Analysis Branch at NASA GRC. Copernicus is a very general mission design tool
that enables the formulation of arbitrarily complex spacecraft trajectories with complicated constraints and objective
functions. SNOPT7, a general-purpose system for constrained local optimization, is used as the gradient based
optimizer within Copernicus.

Copernicus has a number of built in command-line operation options that made for a more straightforward
integration with PMBH. On of specific use is a command-line option to randomize the OV by a given percentage
before running the optimizer, which eliminated the need to read and write files in order to do so. The next section,
Random Number Generation, provides more detail about how the randomization percentage is determined.

The authors have also successfully implemented variations of PMBH with other mission design tools, including
EMTG and GMAT8, the details of which are not included here.

B. Random Number Generation
The random perturbation of the OV utilizes an internal Copernicus feature that randomizes each optimization

variable according to Equation 1, where ∆" is change in the individual optimization variable, 𝑥" is its initial value, 𝑟"
is a uniform random number between -1 and +1 (different for each variable in the vector), and 𝑓 is a user specified
maximum percent change. It is through the maximum percentage change, 𝑓, that numbers from a particular probability
distribution are used to drive the randomization.

Equation 1. Copernicus Internal OV Randomization

∆"

𝑟"𝑓
100

⋅ 𝑥",										𝑖𝑓	𝑥" 	≠ 0	

𝑟"𝑓
100

,																	𝑖𝑓	𝑥" 	= 0

 The selection of random numbers for use in perturbing the OV vector can play an important role in how quickly

MBH improves the solution. It has been found that random numbers pulled from long tailed probability distributions,
Pareto distributions in particular, can improve the efficiency and robustness of MBH algorithms.4 The Pareto
distribution has the probability density function shown in Equation 2, where 𝑎 defines the shape and 𝑚 is the scale
that defines the minimum value. In this PMBH implementation, 𝑚 is set to zero and 𝑎 is chosen based on the sensitivity
of the problem type. Large values of 𝑎 tend to decrease the magnitude of ∆" and maintain a search radius closer to the
current solution, while the opposite is true for small values of 𝑎.

Equation 2. Pareto Probability Density Function

𝑝 𝑥 =
𝑎𝑚1

𝑥123
, 𝑓𝑜𝑟	𝑥 > 𝑚

It has been found that 𝑎 = 2 provides good performance through experimentation. Decreasing 𝑎 by a small amount

after each unsuccessful hop – and resetting it to the initial value after each better solution is located – is found to
improve performance by widening the search radius as improved solutions become less frequent.

C. Feasible Solution Solving
The pseudo code algorithms above only update the best solution vector, X*, when a more optimal solution is found.

When starting with an infeasible initial guess, such an algorithm would need to locate an optimal solution through
random search before a better X* could be determined. To more efficiently reach the first converged solution from an
infeasible initial guess, a two-step solving method is included. With the feasibility value of a given solution assigned
based on the magnitude of the worst constraint violation, the first step is to search for increasingly feasible solutions,
updating X* along the way, until a solution is found which meets a user specified feasibility threshold. At that point,
step two continues searching for more optimal solutions as usual.

Figure 4 shows the modified head node pseudo code including the two-step solving. The worker pseudo code
remains unchanged.

1: X* = x0
2: send X* to workers
3:
4: for solution received from workers:
5: if no feasible solution found yet:
6: if feasibility < best_feasibility:
7: X* = xf
8: best_feasibility = feasibility
9: send X* to workers
10: else:
11: if objective < best_objective:
12: X* = xf
13: best_objective = objective
14: send X* to workers

Figure 4. Pseudo Code for PMBH Head Node with Feasible Solution Solving

V. Demonstration Cases
The capability described in this paper, to automatically converge and/or improve solutions to low thrust trajectory

optimization problems, has demonstrated extensive utility since it was developed. Outlined below are a few
demonstration cases that show the types of results achieved. A general description of each case is provided, followed
by a brief discussion of how PMBH was able to improve the solution. The cases include a low thrust cislunar orbit
transfer from a Lunar Distant Retrograde Orbit (DRO) to a southern EML2 Near Rectilinear Halo Orbit (NRHO), a
low thrust spiral from a High Earth Orbit (HEO) to an NRHO, and a roundtrip Mars conjunction class mission
departing from an NRHO. These demonstration cases highlight the ability of PMBH to improve a locally optimal
solution, converge an infeasible solution, and finally to converge and improve a solution to a very large optimization
problem. All demonstration cases were run on a 28-core (2 Intel Xeon E7-4830v4 @ 2.00 GHz) Linux workstation
with one head node and 27 workers.

A. Cislunar Orbit Transfer
 The first demonstration case for this algorithm is a low thrust transfer from a L2 southern NRHO with a 9:2 lunar
synodic resonance to a 70,000 km DRO. This transfer proves to be a fitting application for this algorithm due to the
large number of local minima within the solution space and the non-intuitive nature of the optimal solutions. The
initial guess for this transfer was a locally optimal solution generated by an experienced mission designer. This
example demonstrates the ability of the algorithm to quickly improve solutions from a good initial guess.

Problem Definition
The NRHO and DRO are formulated in such a way that they can be constructed and phased as part of optimization

process. The fully integrated trajectory uses the DE421 ephemeris with point mass gravity from the Earth, Moon, and
Sun. The continuously time varying finite burns use representative polynomial thrust and mass-flow curves for three
13.3 kW Hall thrusters. The optimization objective function is minimum propellant mass. In total, this problem
contains 55 optimization variables and 21 nonlinear constraints. Table 1 describes the details of the example problem.
Figure 5 shows a representative initial NRHO and final DRO in the Earth-Moon rotating frame to better illustrate the
transfer.

Table 1. Cislunar Orbit Transfer Example Parameters

Metric Value
Initial Mass 24,500 kg
SEP Power @ 1AU 40 kW (1/R2)
Nominal Engine Isp 2600 s
Objective Function Minimum Propellant
Gravitating Bodies Earth, Moon, Sun
Ephemeris DE421
Copernicus Segments 17
Optimization Variables 55
Nonlinear Constraints 22

Figure 5. Representative NRHO and DRO in Moon-Centered, Earth-Moon Rotating Frame

Results

 The PMBH run time in this case was limited to one hour, during which no human supervision was required. Figure
6 plots the objective function evolution over the course of the run time. The initial guess was a locally optimal solution
that required 180 kg of propellant. After 750s (12.5 minutes) of run time and 224 hops, the propellant required
decreased by 61% to 70 kg. No improvement in the solution was found after this time. The solution space was explored
at an average rate of 18 hops per minute.

Figure 6. Plot of Objective Function (Propellant Mass) vs. PMBH Run Time

Figure 7 shows a side-by-side comparison of a portion of the initial and final solutions in the Earth-Moon rotating
frame. The NRHO is in green, the DRO is in red, coast arcs are blue, and thrust arcs are orange. While the final
solution looks less chaotic, it is not immediately obvious which would produce a more efficient transfer or why. This
demonstrates the ability of PMBH to improve solutions when dealing with trajectories in non-intuitive solution
regimes.

40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600 700 800

O
bj

ec
tiv

e F
un

ct
io

n
(k

g)

Time (s)

9:2 NRHO

Figure 7. Comparison of Initial (left) and Final (right) Solutions in the Earth-Moon Rotating Frame.

B. Spiral to NRHO
The second demonstration is a low thrust transfer from a 24-hour period HEO to an NRHO with a 9:2 lunar synodic

resonance, including a 100+ day low-thrust spiral. Due to the sensitivities of this problem type, such as the long low-
thrust spiral, reaching convergence can be tedious for a mission designer. The initial guess for this demonstration was
an infeasible solution generated while an experience mission designer worked to converge the problem. This example
demonstrates the ability of the algorithm to converge infeasible solutions, and then improve upon the solution once
initial convergence is reached.

Problem Definition

The NRHO is formulated in such a way that it can be constructed and phased as part of optimization process. The
fully integrated trajectory uses the DE421 ephemeris with point mass gravity from the Earth, Moon, and Sun. The
continuously time varying finite burns use representative polynomial thrust and mass-flow curves for three 13.95 kW
Hall thrusters. The optimization objective is minimum propellant mass. In total, this problem contains 55 optimization
variables and 21 nonlinear constraints. Table 2 describes the details of the example problem.

Table 2. GTO to NRHO Transfer Example Parameters

Metric Value
Initial Mass 11,000 kg
SEP Power @ 1AU 42 kW (1/R2)
Nominal Engine Isp 2600 s
Objective Function Minimum Propellant
Gravitating Bodies Earth, Moon, Sun
Ephemeris DE421
Copernicus Segments 14
Optimization Variables 55
Nonlinear Constraints 21

Results
The PMBH run time in this case was limited to one hour. Figure 8 plots the objective function and feasibility

evolution over the course of the run time. The first feasible solution was reached after 200s and 17 hops. After 3600s
(60 minutes) of run time and 292 hops, the propellant required decreased by 7% from 984 kg to 918 kg. The solution
space was explored at an average rate of 5 hops per minute. Most importantly, PMBH was able to quickly turn the
infeasible initial guess into a feasible solution with no human supervision required.

Moon

Figure 8. Plot of Objective Function (Propellant Mass) and Feasibility vs. PMBH Run Time

 Figure 9 shows the initial guess and final optimal trajectory the Earth-centered J2000 frame. Thrust arcs are red,
coast arcs are blue, the Moon’s trajectory is grey, and Earth is the blue dot in the center. In addition to actually being
feasible, the final trajectory has visibly shorter thrust arcs resulting in less propellant usage.

Figure 9. Comparison of Initial (left) and Final (right) Solutions in the Earth-Centered J2000 Frame.

C. Roundtrip Mars Mission
The third and final demonstration is a round-trip Mars conjunction class mission with a hybrid vehicle utilizing

low and high thrust propulsion. Due to the sensitivities of this problem, including LGA departure sequence, higher
order Mars gravity, and multiple propulsion systems, reaching convergence can be tedious. Complicating that effort
further, a single call to SNOPT can take upwards of 45-minutes to execute. The initial guess for this transfer was an
infeasible solution generated while an experience mission designer worked to converge the problem. This example
demonstrates the ability of the algorithm to locate feasible solutions from an infeasible starting point, and then improve
upon the solution once initial convergence is reached. Also, the parallelization of PMBH enables this class of problem
to be run in a reasonable amount of time compared to a serial MBH implementation. See section VI for a comparison
of serial MBH vs. PMBH.

Problem Definition

The end-to-end optimized mission begins in a Lunar NRHO, completes a Lunar Gravity Assist (LGA) departure
sequence, and then executes a chemical burn to depart for Mars. The electric propulsion system propels the vehicle to
Mars where it captures into a 5-sol orbit with a chemical burn targeting a landing latitude of 18.8 degrees. During the
300-day stay at Mars, the low thrust system maneuvers the vehicle to target the appropriate orbital elements to
rendezvous with a Mars Ascent Vehicle and depart using another chemical burn. The low thrust system then pushes
the vehicle back to Earth intercept.

0

0.5

1

1.5

2

2.5

900

920

940

960

980

1000

0 600 1200 1800 2400 3000 3600

Fe
as

ib
ili

ty

O
bj

ec
tiv

e F
un

ct
io

n
(k

g)

Elapsed Time (s)

Objective Feasibility

NRHO
Arrival

The fully integrated trajectory uses the DE421 ephemeris with point mass gravity from the Earth, Moon, and Sun
and 4x4 spherical harmonics for Mars. The continuously time varying finite burns use representative polynomial thrust
and mass-flow curves for 26 13.3 kW Hall thrusters. The optimization objective is minimum initial mass for a fixed
final mass. In total, this problem contains 58 optimization variables and 27 nonlinear constraints. Table 3 describes
the details of the example problem.

Table 3. Mars Round Trip Example Parameters

Metric Value
Final Mass 59,000 kg
SEP Power @ 1AU 318 kW (1/R2)
Nominal Engine Isp 2600 s
Objective Function Minimum Initial Mass
Gravitating Bodies Earth, Moon, Sun, Mars
Ephemeris DE421
Copernicus Segments 35
Optimization Variables 58
Nonlinear Constraints 27

Results

The PMBH run time in this case was limited to 6 hours. Figure 10 plots the objective function and feasibility
evolution over the course of the run time. The first feasible solution was reached after 24 minutes and 39 hops. After
5.5 hours of run time and 822 hops, the initial mass required decreased from 101.2 mt to 98.3 mt. The solution space
was explored at an average rate of 2.5 hops per minute. Most importantly, PMBH was able to quickly turn the
infeasible initial guess for a very complex and sensitive problem into a feasible solution with no human supervision
required.

Figure 10. Plot of Objective Function (Initial Mass) and Feasibility vs. PMBH Run Time

Figure 11 shows the initial guess and final optimal trajectory the Sun-centered Ecliptic J2000 frame. Thrust arcs
are red, coast arcs are blue, Earth’s trajectory is thin blue, and Mars’ trajectory is thin red. There are only minimal
visual differences between the two trajectories at this scale, as much of the sensitive portions are near Earth and Mars.

0

1

2

3

4

5

6

98

99

100

101

102

0 1 2 3 4 5 6

Fe
as

ib
ili

ty

O
bj

ec
tiv

e F
un

ct
io

n
(m

t)

Elapsed Time (hours)

Objective Feasibility

Figure 11. Comparison of Initial (left) and Final (right) Solutions in the Sun-Centered Ecliptic J2000 Frame.

VI. MBH vs. PMBH Scaling

 The purpose of parallelizing MBH is to increase the speed at which the algorithm can search the solution space.
One way to measure this speed is the number of hops performed by the workers per minute (HPM). In order to
characterize this performance, 20 trials of each demonstration case (10 for Mars) were completed with 1 worker (i.e.
serial MBH) and with 27 workers. Multiple trials for each case are necessary because of the stochastic nature of the
algorithm. The results from all trials were then averaged to obtain a single HPM value for each case/workers
combination. All PMBH run times were limited to one hour, except the Mars roundtrip cases, which were limited to
3 hours. In addition to measuring the speed of the algorithm, HPM is also a relative measure of how complex a problem
is. For example, a lower average HPM means that more time is required by SNOPT to evaluate each hop.

The scale factor is defined as the ratio of HPM for 27 workers divided by the HPM for 1 worker. In this case, the
scale factor would be equal to 27 if the algorithm scales exactly linearly with the number of workers. In practice, sub-
linear scaling is observed. This could be partially due to the way the specific hardware used is able to utilize turbo
boost to increase the clock speed of a single core from 2.0 to 2.8 GHz, whereas it is unable to when fully utilizing all
cores at maximum thermal design power. Table 4 shows the scale factors achieved for each of the demonstration
cases.

Table 4. PMBH Scaling Results for 10 Trials

Demonstration Case Average HPM
(1 worker)

Average HPM
 (27 workers) Scale Factor

1. NRHO to DRO 1.29 17.80 13.8
2. HEO to NRHO 0.21 4.77 22.7
3. Mars Roundtrip 0.12 2.46 20.5

The scale factors observed ranging from approximately 14-23 indicates that it would, on average, take the serial

MBH implementation 14-23 times longer to reach the same solution as the PMBH algorithm with 27 workers. More
specifically, for the Mars roundtrip example, it is expected that the serial MBH implementation would require 61.5
hours to arrive at the solution reached by the 27-worker PMBH algorithm in 3 hours.

While HPM is a good measure of the speed of the algorithm, it does not account for other factors which impact the
time to reach a specific solution. One advantageous factor is that each worker in a parallelized scheme is more efficient
than a serial worker because of the cooperative nature of the algorithm. For example, since the time to evaluate each
hop can vary widely, a single parallel worker may evaluate 1 hop while another evaluates 5, yet both workers benefit
from whatever information was gained from the full 6 hops. This should result in fewer total hops being required to
solve a problem.

Mars
Arrival

Mars
Departure

Earth
Departure Earth

Arrival

One disadvantage of the PMBH described here manifests because a new X* is only read by a worker after the current
hop is complete. Specifically, some workers will be optimizing a hop from the previous X* while a new X* has been
delivered to them, whereas a serial implementation would always be operating with the latest X*. As problems become
more complex, more time is necessary to evaluate each hop, which means more time will be spent evaluating a hop
from a previous solution while a better solution is waiting. This should result in more total hops being required to
solve a problem.

Figure 12 contains plots of objective function vs. run time for all trials in the scaling study. Red dashed lines
correspond to serial MBH trials. If the serial MBH trial only found a single feasible solution, that solution is plotted
as a red x. Blue lines correspond to PMBH trials with 27 workers. Each line begins at the first feasible solution found
and ends at the last. Since the NRHO to DRO transfer started with a feasible solution, the lines begin at run time equal
to zero. The other two examples started with an infeasible initial guess, so some time is spent finding the first feasible
solution.

From the NRHO to DRO Transfer plot, it is immediately clear that the blue PMBH trials find better solutions much
faster than the red serial trials when starting from a feasible initial guess. In addition to improving the solution faster,
the HEO to NRHO to Mars Roundtrip plots show that the PMBH trials find the first feasible solution faster when
starting from an infeasible initial guess. Further, many of the serial MBH trials did not find a single feasible solution
in the allotted time. In the HEO to NRHO Transfer trials, only 14 out 20 found at least one feasible solution. In the
Mars Roundtrip trials, only 2 out of 10 found at least one feasible solution. Feasible solutions were found for all
PMBH trials. This result demonstrates the ability of PMBH to solve a complex class of problems that would otherwise
be impractical with a serial MBH implementation.

Figure 12. Plots of Objective Function vs. Run Time for all Trials of the NRHO to DRO Transfer (top
left), HEO to NRHO Transfer (top right), and Mars Roundtrip (bottom center)

VII. Conclusion
In conclusion, PMBH has been shown to be a very useful tool for solving low thrust trajectory optimization

problems. It is able to find feasible solutions from infeasible initial guesses and improve optimal solutions once
feasibility is reached. Further, this method is able to achieve these results in an automated way without human
supervision. The parallelization not only improves the speed at which solutions can be found and improved, but
enables the solving of very complex low thrust trajectory optimization problems that would otherwise be impractical
with a serial MBH implementation. Lastly, while PMBH was presented here in the context of complex low thrust
trajectory optimization, it would also have application to a wide range of numerically simpler trajectory optimization
problems.

Acknowledgments
The authors would to extend a warm thank you to our colleagues at NASA Glenn Research Center for their

contributions. Specifically, Laura Burke for providing initial Copernicus input decks for the demonstration cases,
Steve Oleson for securing the funding for the computing resources used in this effort, and Les Balkanyi for carefully
reviewing the final manuscript.

References
[1] Vavrina, M., Englander, J., Ellison, D., “Global Optimization of N-Maneuver, High-Thrust Trajectories Using Direct Multiple

Shooting,” AAS/AIAA Spaceflight Mechanics Meeting, Napa, CA, February 2016.
[2] Englander, J., Vavrina, M., Ghosh, A., “Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission

Design,” AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA, January 2015.
[3] Conway, B., “Spacecraft Trajectory Optimization”, Cambridge University Press, New York, 2010.
[4] Englander, J., Englander, A., “Tuning Monotonic Basin Hopping: Improving the Efficiency of Stochastic Search as Applied to

Low-Thrust Trajectory Optimization”, International Symposium on Space Flight Dynamics, Laurel, MD, May 2014.
[5] Python Software Foundation, Python Language Reference, version 2.7, http://www.python.org
[6] Williams, J., Senent, J., Ocampo, C., Mathur, R., Davis, E., “Overview and Software Architecture of the Copernicus Trajectory

Design and Optimization System”, 4th International Conference on Astrodynamics Tools and Techniques, Madrid, May 2010.
[7] Gill, P.E., Murray, W., and Saunders, M.A., "SNOPT: An SQP algorithm for large-scale constrained optimization." SIAM

Journal on Optimization, Vol. 12 No. 4, 2002, pp. 979-1006.
[8] Hughes, Steven P., “General Mission Analysis Tool (GMAT)”, International Conference on Astrodynamics Tools and

Techniques (ICATT) Darmstadt, 2016.

